
FRAMEWORKS

Easy Searching with Elasticsearch
Using Elasticsearch’s high- and low-level
APIs to search synchronously and
asynchronously
by Henry Naftulin

January 10, 2020

Elasticsearch is an open source search engine built on top of a full-text
search library called Apache Lucene. Apache Lucene is a Java library
that provides indexing and search technology, spell-checking, and
advanced analysis/tokenization capabilities. Lucene dates back to 1999
as a SourceForge project and joined the Apache Software Foundation in
2001. It is the backbone for at least two popular search engines: Solr and
Elasticsearch. Both of these search engines are powerful and have their
own strengths and weaknesses. Although Solr has been around longer,
and historically has better documentation, Elasticsearch is a better choice
for applications that require not only text search but also time series
search and aggregations. This article concentrates on Elasticsearch only.
To learn more about comparing the Solr and Elasticsearch engines, refer
to this article.

Learning about Elasticsearch is a large topic. It encompasses search-
optimized document design, query and analysis, mappings, cluster
management, data ingestion, and security. In this article, I introduce core
concepts of Elasticsearch and then explore in depth how to use the
Elasticsearch Java API to create, update, delete, and search a document
in an index. I describe both the low-level API and the high-level API for
performing these operations as well as how to execute these tasks
synchronously and asynchronously. I will also discuss how to stream data
into an Elasticsearch cluster, which is necessary if you are reading data
from a stream, a queue, or another source that is too large to be loaded
into memory.

Getting Started

First, download Elasticsearch. Then start it by navigating to the
installation directory and running . Once the
Elasticsearch engine has started, you will see “started” in the log output.
Then you can open and you will receive a
JSON response letting you know that your single-node cluster is up (see
Figure 1).

Figure 1. JSON response showing an Elasticsearch cluster is running

Core Concepts

bin elasticsearch.bat

http://localhost:9200/

Easy Searching with Elasticsearch

Getting Started

Core Concepts

Low-Level Synchronous CRUD API

High-Level REST Client

Streaming Data into Elasticsearch

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/frameworks
https://www.elastic.co/products/elasticsearch
https://lucene.apache.org/
https://logz.io/blog/solr-vs-elasticsearch/
https://www.elastic.co/downloads/elasticsearch
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://www.oracle.com/

Now that you have Elasticsearch running, let’s examine a few core
concepts so you can familiarize yourself with the terminology. To make
things easier, in Table 1, I compare each concept with a similar concept
used in database technology. The comparisons are not entirely accurate,
but they make learning the new terms a little easier.

Table 1. Comparison of Elasticsearch and database concepts

In this article, I work a lot with catalog items. For my purposes, catalog
items have an ID, description, price, and sales rank (a number
representing how popular the item is). A catalog item will belong to a
category and will be produced by a manufacturer. A category will have a
name and a parent category, while a manufacturer has a name and an
address.

Low-Level Synchronous CRUD API

Now let’s explore the create, read, update, and delete (CRUD) API of the
low-level client. The low-level client requires a minimal number of
Elasticsearch dependencies, and it mirrors the REST endpoint API
provided by Elasticsearch. As such, new releases of Elasticsearch should
be backward compatible with the low-level client dependencies. The
reason the client is called “low-level” is because you will need to do all
the work of creating a JSON object request and also manually parse the
response. In an environment where memory is limited, this might be the
only solution available to you. The high-level client API is built on top of
the low-level API, so it makes sense to start with the low-level API.

To get the low-level Elasticsearch libraries, all you need to do is to import
the REST client as shown below for Maven. In my code, I also import
libraries that will help serialize and deserialize JSON into the model
classes, which are not shown here.

To build the REST client, I use the REST client builder and point it to the
host (or hosts) that the client will communicate with. The client is thread-
safe, so it could be used for the entire lifecycle of the application. To
release the underlying HTTP client resources, the client needs to be
closed when the application is done using it. As an example, I use try-
with-resources to initialize the client and once initialized pass it to the

 constructor. I use the

<dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>elasticsearch-rest-client</artifactId>
 <version>7.0.0</version>
</dependency>

CrudMethodsSynchronousCrudMethodsSynchronous

 class as the wrapper to call Elasticsearch’s
create/update/delete API:

To insert the document into an Elasticsearch index, I create a PUT
request and ask the client to execute the request. The important part of
the document creation is the HTTP method you use to create it: I chose
PUT. You can use a POST method as well; in fact, POST is the preferred
method for creating a record while PUT is the preferred method for
updating a record. But in my case, because I run this sample program
several times and sometimes I don’t clean the index, PUT works better.
The PUT method is used here as an upsert (that is, an insert or update).

The URI is important as well. Let’s look at an example:

The first part of it is the index that is similar to a database where
documents are stored, which in this case is

. The second part is , which indicates
that you are dealing with a document. Before Elasticsearch 7, you would
have specified the type here, for example, . But types are
no longer used. The last part is the ID of the document. Note that the
index name needs to be in lowercase. In this example, I am creating
documents one by one; later in this article, I will show how to create
several items in bulk.

Once the items are created, I would like to find one item via a full-text
search—in this example, I’ll look for a flashlight. This search will consider
all the fields in the document, and it will return records in which any field
has a flashlight as a token. One thing to note here is that Elasticsearch
has the concept of both filters and searches. Filters are faster searches
that are intended to return results but not rate their relevance, whereas
searches return results and rate each result with a relevance score. (In
this article, I look at searches only.)

To run a search with a low-level client, I need to issue a GET request that
will run against my index with the following URI:

CrudMethodsSynchronousCrudMethodsSynchronous

public static void main(String[] args) {public static void main(String[] args) {
 try (RestClient client = RestClient.builder(try (RestClient client = RestClient.builder(
 new HttpHost("localhost", 9200, "http")).b new HttpHost("localhost", 9200, "http")).b
 CrudMethodsSynchronous scm = CrudMethodsSynchronous scm =
 new CrudMethodsSynchronous(new CrudMethodsSynchronous(
 "catalog_item_low_level", client); "catalog_item_low_level", client);
 } }
}}

http://localhost:9200/catalog_item_low_level/_doc/1

catalog_item_low_level _doc

catalogitem

public void createCatalogItem(List<CatalogItem> itempublic void createCatalogItem(List<CatalogItem> item
 items.stream().forEach(e-> { items.stream().forEach(e-> {

 Request request = new Request("PUT", Request request = new Request("PUT",
 String.format("/%s/_doc/%d", String.format("/%s/_doc/%d",
 getIndex(), e.getId())); getIndex(), e.getId()));
 try { try {
 request.setJsonEntity(request.setJsonEntity(
 getObjectMapper().writeValueAsString(e) getObjectMapper().writeValueAsString(e)

 getRestClient().performRequest(request); getRestClient().performRequest(request);
 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", e, ex); LOG.warn("Could not post {} to ES", e, ex);
 } }
 }); });
}}

List<CatalogItem> items = List<CatalogItem> items =
 scm.findCatalogItem("flashlight"); scm.findCatalogItem("flashlight");
LOG.info("Found {} items: {}", items.size(), items)LOG.info("Found {} items: {}", items.size(), items)

. Because the low-level API uses the
Elasticsearch REST interface, I need to construct the REST query object
by hand, which in my case is

.

After sending the request to Elasticsearch, I will receive a result in a
 object. The result contains the return status as well as an

entity that represents the JSON response. To get results,
I need to navigate through the response structure.

I first find the documents my search returned, and then I convert the
returned JSON documents into my model. As you can see, I have to
heavily rely on Elasticsearch REST documentation to both create
requests and parse responses. The easiest way to see how to form a
request and test what Elasticsearch will return is to use the Advanced
REST Client (ARC) plugin to Chrome or the Postman app, or install
Kibana.

To change this search so it looks only at a particular field (for example,
the category name of a catalog item), all you need to do is to change the
previous query to

. Then use the same process to submit the request and parse the results.

These two searches are different from retrieving an item by its ID. Here, I
only need to issue a GET request to an index passing the ID,

, for example, and parsing the return object is
different because I am not getting an array of items that were found, but
only the one item, if it exists. Here is the code that shows how to use the
low-level API to search by ID. As with all low-level API calls, I need to
parse the JSON response, skipping over the metadata and extracting

 information, as shown here:

/<indexname>/_search

{ "query" : {"query_string" : { "query": "flashlight"

} } }

ResponseResponse

CatalogItemCatalogItem

public List<CatalogItem> findCatalogItem(String textpublic List<CatalogItem> findCatalogItem(String text
 Request request = new Request("GET", Request request = new Request("GET",
 String.format("/%s/_search", getIndex(String.format("/%s/_search", getIndex(

 request.setJsonEntity(String.format(SEARCH, text request.setJsonEntity(String.format(SEARCH, text
 try { try {
 Response response = client.performRequest(re Response response = client.performRequest(re
 if (response.getStatusLine().getStatusCode()==OK if (response.getStatusLine().getStatusCode()==OK
 List<CatalogItem> catalogItems = List<CatalogItem> catalogItems =
 parseResultsFromFullSearch(response parseResultsFromFullSearch(response

 return catalogItems; return catalogItems;
 } }
 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", text, ex LOG.warn("Could not post {} to ES", text, ex
 } }
 return Collections.emptyList(); return Collections.emptyList();
}}

{ "query" : { "match" : { "category.category_name" :

"Home" } } }

/<indexname>/_doc/5

CatalogItemCatalogItem

public Optional<CatalogItem> getItemById(Integer idpublic Optional<CatalogItem> getItemById(Integer id
 Request request = new Request("GET", Request request = new Request("GET",
 String.format("/%s/_doc/%d", getIndex(), id String.format("/%s/_doc/%d", getIndex(), id
 try { try {
 Response response = client.performRequest(reques Response response = client.performRequest(reques
 if (response.getStatusLine().getStatusCode() == if (response.getStatusLine().getStatusCode() ==
 String rBody = String rBody =
 EntityUtils.toString(response.getEntity() EntityUtils.toString(response.getEntity()
 LOG.debug("find by item id response: {}", rBod LOG.debug("find by item id response: {}", rBod
 int start = rBody.indexOf(_SOURCE); int start = rBody.indexOf(_SOURCE);
 int end = rBody.indexOf("}}"); int end = rBody.indexOf("}}");
 String json = rBody.substring(String json = rBody.substring(
 start + _SOURCE.length(), end+2 start + _SOURCE.length(), end+2
 LOG.debug(json); LOG.debug(json);
 CatalogItem item = CatalogItem item =
 jsonMapper.readValue(json, CatalogItem.cla jsonMapper.readValue(json, CatalogItem.cla
 return Optional.of(item); return Optional.of(item);
 } }

https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo
https://www.getpostman.com/
https://www.elastic.co/downloads/kibana

Updating a document. There are a couple of ways to update a
document: You can issue an update to an entire document or issue an
update that modifies a particular field only. Because is a
rather small document, I will update it fully:

To update only a particular field, you issue a POST request to the same
URI, but instead of sending an object in the request, you send just the
field that you need to update, as shown next:

Deleting an item. Deleting an item is also straightforward: All you need
to do is send a DELETE request with the index and the document ID, for
example, .

This completes the overview of CRUD methods in the low-level
synchronous client.

Asynchronous calls. To make an asynchronous call using the low-level
client, you just need to call the method instead
of the method. You must supply a response listener to
the asynchronous call. The response listener needs to implement two
methods: and . I show these in lines 5 and 9 of

 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", id, ex); LOG.warn("Could not post {} to ES", id, ex);
 } }
 return Optional.empty(); return Optional.empty();
}}

CatalogItemCatalogItem

public void updateCatalogItem(CatalogItem item) {public void updateCatalogItem(CatalogItem item) {
 Request request = Request request =
 new Request("POST", new Request("POST",
 String.format("/%s/_update/%d", String.format("/%s/_update/%d",
 getIndex(), item.getId())); getIndex(), item.getId()));
 try { try {
 request.setJsonEntity("{ \"doc\" :" + request.setJsonEntity("{ \"doc\" :" +
 jsonMapper.writeValueAsString(item)+" jsonMapper.writeValueAsString(item)+"

 Response response = client.performRequest(reques Response response = client.performRequest(reques
 LOG.debug("update response: {}", response); LOG.debug("update response: {}", response);
 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", item, ex); LOG.warn("Could not post {} to ES", item, ex);
 } }
}}

public void updateDescription(Integer id, String despublic void updateDescription(Integer id, String des
 Request request = new Request("POST", Request request = new Request("POST",
 String.format("/%s/_update/%d", index, i String.format("/%s/_update/%d", index, i
 try { try {

 request.setJsonEntity(request.setJsonEntity(
 String.format(String.format(
 "{ \"doc\" : { \"description\" : \"%s\" "{ \"doc\" : { \"description\" : \"%s\"
 desc)); desc));

 Response response = client.performRequest(reques Response response = client.performRequest(reques
 LOG.debug("update response: {}", response); LOG.debug("update response: {}", response);
 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", id, ex); LOG.warn("Could not post {} to ES", id, ex);
 } }
}}

/<indexname>/_doc/5

public void deleteCatalogItem(Integer id) {public void deleteCatalogItem(Integer id) {
 Request request = new Request("DELETE", Request request = new Request("DELETE",
 String.format("/%s/_doc/%d", getIndex(), id String.format("/%s/_doc/%d", getIndex(), id
 try { try {
 Response response = client.performRequest(reques Response response = client.performRequest(reques
 LOG.debug("delete response: {}", response); LOG.debug("delete response: {}", response);
 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", id, ex); LOG.warn("Could not post {} to ES", id, ex);
 } }
}}

performRequestAsyncperformRequestAsync

performRequestperformRequest

onSuccessonSuccess onFailureonFailure

the following code. In this example, I am upserting several items into an
Elasticsearch index asynchronously.

A countdown latch is part of Java concurrent package, and it is used here
as a thread synchronization mechanism. The countdown latch is
initialized with an integer count, and it will block the thread calling its
await() method until the number of countDown calls that are made by
other threads are equal to the value it is initialed with.

To do that, I create a countdown latch and use it to make sure
 will not return until all the items are sent and

processed by Elasticsearch. In my response listener implementation, I
use latch countdown methods upon both success and failure to indicate
that Elasticsearch has processed an item.

Using an asynchronous client is much easier with the high-level REST
client.

High-Level REST Client

The high-level REST client is built on top of the low-level client. It adds a
few Elasticsearch dependencies to the project, but as you will see, it
makes coding much easier and enjoyable for both the synchronous and
asynchronous API. One thing to keep in mind when choosing to use the
high-level API is that it is recommended to upgrade client dependencies
with each major update to the Elasticsearch cluster. This dependency
upgrade is not needed when using the low-level API, but you might have
to adjust your implementation to compensate for any underlying
Elasticsearch API changes. While the high-level client makes coding
easier, the low-level client gives you more control and has a smaller
binary footprint.

To get the high-level Elasticsearch libraries, all you need to do is import
the REST client as shown below for a Maven project.

createCatalogMethodcreateCatalogMethod

public void createCatalogItem(List<CatalogItem> itempublic void createCatalogItem(List<CatalogItem> item
 CountDownLatch latch = new CountDownLatch(items.si CountDownLatch latch = new CountDownLatch(items.si
 ResponseListener listener = new ResponseListener(ResponseListener listener = new ResponseListener(
 @Override @Override
 public void onSuccess(Response response) { public void onSuccess(Response response) {
 latch.countDown(); latch.countDown();
 } }
 @Override @Override
 public void onFailure(Exception exception) { public void onFailure(Exception exception) {
 latch.countDown(); latch.countDown();
 LOG.error(LOG.error(
 "Could not process ES request. ", exception "Could not process ES request. ", exception
 } }
 }; };

 itemsToCreate.stream().forEach(e-> { itemsToCreate.stream().forEach(e-> {
 Request request = new Request(Request request = new Request(
 "PUT", "PUT",
 String.format("/%s/_doc/%d", String.format("/%s/_doc/%d",
 index, e.getId())); index, e.getId()));
 try { try {
 request.setJsonEntity(request.setJsonEntity(
 jsonMapper().writeValueAsString(e)); jsonMapper().writeValueAsString(e));
 client.performRequestAsync(request, listener client.performRequestAsync(request, listener
 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", e, ex); LOG.warn("Could not post {} to ES", e, ex);
 } }
 }); });
 try { try {
 latch.await(); //wait for all the threads to fin latch.await(); //wait for all the threads to fin
 LOG.info("Done inserting all the records to the LOG.info("Done inserting all the records to the
 } catch (InterruptedException e1) { } catch (InterruptedException e1) {
 LOG.warn("Got interrupted.",e1); LOG.warn("Got interrupted.",e1);
 } }
}}

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/concurrent/CountDownLatch.html

Building a high-level REST client is very similar to building a low-level
REST client. The only difference is that I need to wrap my low-level client
in a high-level client API:

In the attached code, I have all the same methods the low-level client
implemented, but because the high-level model is so much easier to work
with, I will describe only two methods here: how to create a document
and how to search for a document.

To create a document in the Elasticsearch high-level API, you need to
use and initialize it with the name of the desired index.
Then set the ID on the request and add JSON as a source. Calling the
high-level client index API with the request synchronously will return the
index response, which could then be used to see if a document was
created or updated.

Similarly, a full text search is much easier to read. Here, I create a search
request by passing an index and then use a search query builder to
construct a full text search. The search response encapsulates the JSON
navigation and allows you easy access to the resulting documents via the

 array in the following code:

<dependency>
 <groupId>org.elasticsearch.client</groupId>
 <artifactId>
 elasticsearch-rest-high-level-client
 </artifactId>
 <version>7.4.2</version>
</dependency>

try(RestHighLevelClient client = try(RestHighLevelClient client =
 new RestHighLevelClient(new RestHighLevelClient(
 RestClient.builder(RestClient.builder(
 new HttpHost("localhost", 9200, "http") new HttpHost("localhost", 9200, "http")

 CrudMethodsSynchronous scm = CrudMethodsSynchronous scm =
 new CrudMethodsSynchronous(new CrudMethodsSynchronous(
 "catalog_item_high_level", client); "catalog_item_high_level", client);

IndexRequestIndexRequest

public void createCatalogItem(List<CatalogItem> itempublic void createCatalogItem(List<CatalogItem> item
 items.stream().forEach(e-> { items.stream().forEach(e-> {
 IndexRequest request = new IndexRequest(index); IndexRequest request = new IndexRequest(index);
 try { try {
 request.id(""+e.getId()); request.id(""+e.getId());
 request.source(jsonMapper.writeValueAsString request.source(jsonMapper.writeValueAsString
 XContentType.JSON); XContentType.JSON);
 request.timeout(TimeValue.timeValueSeconds(1 request.timeout(TimeValue.timeValueSeconds(1
 IndexResponse response = client.index(reques IndexResponse response = client.index(reques
 RequestOptions.DEFAULT) RequestOptions.DEFAULT)
 if (response.getResult() == if (response.getResult() ==
 DocWriteResponse.Result.CREATED) { DocWriteResponse.Result.CREATED) {
 LOG.info("Added catalog item with id {} " LOG.info("Added catalog item with id {} "
 + "to ES index {}", + "to ES index {}",
 e.getId(), response.getIndex()); e.getId(), response.getIndex());

 } else if (response.getResult() == } else if (response.getResult() ==
 DocWriteResponse.Result.UPDATED) { DocWriteResponse.Result.UPDATED) {
 LOG.info("Updated catalog item with id {} LOG.info("Updated catalog item with id {}
 " to ES index {}, version of the " + " to ES index {}, version of the " +
 "object is {} ", "object is {} ",
 e.getId(), response.getIndex(), e.getId(), response.getIndex(),
 response.getVersion()); response.getVersion());
 } }

 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", e, ex); LOG.warn("Could not post {} to ES", e, ex);
 } }
 } }
););
}}

SearchHitsSearchHits

https://bitbucket.org/javamagazine/magdownloads/downloads/2020-01-ElasticSearch-Naftulin.zip

In the code above, I searched a specific index in Elasticsearch. To search
all indexes, I would need to create a without any
parameters. What you can see from these two examples is a pattern that
spans the rest of the CRUD methods: You first create a specific request,
passing it an index and a document ID. Such a request could be an
IndexRequest to create a document, a GetRequest to get a document by
ID, an UpdateRequest to update the document, and so on. Then, you
issue the appropriate request to Elasticsearch, for example, to get,
update, or delete and you receive a response that has the status and
source objects, if applicable.

Asynchronous calls. Asynchronous calls are a bit less painful to write
with the high-level client. To write them, you call a similar synchronous
method and add the postfix and supply either an Elasticsearch
ActionListener or a higher-level object, such as a
as a last argument. A is an Elasticsearch class
that is imported by the high-level API dependencies. It implements both
an Elasticsearch interface and Java
interface, making it an ideal choice for response processing.

The following sample code implements all the methods asynchronously:
It is identical to the synchronous example, aside from the fact that I
create a , which will hold a search response and
which I pass to the API of the high-level REST client. The
caller of this method will then inspect the future and when the search
completes, parsing the search response will be done in exactly the same
way as with the synchronous API.

The biggest advantage of asynchronous APIs is that you can perform
other operations in the working thread until you need the results of the
search.

public List<CatalogItem> findCatalogItem(String textpublic List<CatalogItem> findCatalogItem(String text
 try { try {
 SearchRequest request = new SearchRequest(in SearchRequest request = new SearchRequest(in
 SearchSourceBuilder scb = new SearchSourceBu SearchSourceBuilder scb = new SearchSourceBu
 SimpleQueryStringBuilder mcb = SimpleQueryStringBuilder mcb =
 QueryBuilders.simpleQueryStringQuery(text); QueryBuilders.simpleQueryStringQuery(text);
 scb.query(mcb); scb.query(mcb);
 request.source(scb); request.source(scb);

 SearchResponse response = SearchResponse response =
 client.search(request, RequestOptions.DE client.search(request, RequestOptions.DE
 SearchHits hits = response.getHits(); SearchHits hits = response.getHits();
 SearchHit[] searchHits = hits.getHits(); SearchHit[] searchHits = hits.getHits();
 List<CatalogItem> catalogItems = List<CatalogItem> catalogItems =
 Arrays.stream(searchHits) Arrays.stream(searchHits)
 .filter(Objects::nonNull) .filter(Objects::nonNull)
 .map(e -> toJson(e.getSourceAsStri .map(e -> toJson(e.getSourceAsStri
 .collect(Collectors.toList()); .collect(Collectors.toList());

 return catalogItems; return catalogItems;
 } catch (IOException ex) { } catch (IOException ex) {
 LOG.warn("Could not post {} to ES", text, ex LOG.warn("Could not post {} to ES", text, ex
 } }
 return Collections.emptyList(); return Collections.emptyList();
}}

SearchRequestSearchRequest

AsyncAsync

PlainActionFuturePlainActionFuture

PlainActionFuturePlainActionFuture

ActionListenerActionListener FutureFuture

PlainActionFuturePlainActionFuture

searchAsyncsearchAsync

public PlainActionFuture<SearchResponse> public PlainActionFuture<SearchResponse>
 findItem(String tex findItem(String tex

 SearchRequest request = new SearchRequest(getInd SearchRequest request = new SearchRequest(getInd
 SearchSourceBuilder ssb = new SearchSourceBuilde SearchSourceBuilder ssb = new SearchSourceBuilde
 SimpleQueryStringBuilder mqb = SimpleQueryStringBuilder mqb =
 QueryBuilders.simpleQueryStringQuery(te QueryBuilders.simpleQueryStringQuery(te
 ssb.query(mqb); ssb.query(mqb);
 request.source(ssb); request.source(ssb);

 PlainActionFuture<SearchResponse> future = PlainActionFuture<SearchResponse> future =
 new PlainActionFuture< new PlainActionFuture<
 client.searchAsync(request, client.searchAsync(request,
 RequestOptions.DEFAULT, futur RequestOptions.DEFAULT, futur
 return future; return future;
}}

Streaming Data into Elasticsearch

As the last part of this article, I want to show how to stream data into
Elasticsearch and I want to introduce bulk operations. Bulk operations
allow you to execute multiple index, update, or delete operations using a
single request. The advantage of doing a bulk request is that you do
everything in only one round trip to the Elasticsearch server instead of
doing a round trip for every request. Bulk operations also fit very well for
streaming data into Elasticsearch. The only caveat is that you need to
figure out how to size a batch to avoid extra latency by ensuring you don’t
make the batch so big that the entire request times out before fully
completing the work.

A batch request can have different operations in it, but in the following
example, it will just have an index request to insert data into an
Elasticsearch index. The following routine creates one bulk request that
adds an index request for each item passed in a batch. It relies on the
caller to make sure that the batch size is reasonable. Once all the items
are added, a synchronous client bulk request is submitted.

The bulk request call returns a bulk response that contains bulk response
items—each of which corresponds to an item in the request, indicating
what operation was requested, whether it was successful or not, and so
on. I am not using a bulk response in this example for the sake of
simplicity.

The call above is invoked by a procedure that streams a file and makes a
batch of 1,000 documents per load into Elasticsearch.

private void sendBatchToElasticSearch(private void sendBatchToElasticSearch(
 List<LineFromShakespeare> linesInBa List<LineFromShakespeare> linesInBa
 RestHighLevelClient client, RestHighLevelClient client,
 String indexName) throws IOException { String indexName) throws IOException {

 BulkRequest request = new BulkRequest(); BulkRequest request = new BulkRequest();
 linesInBatch.stream().forEach(l -> { linesInBatch.stream().forEach(l -> {
 try { try {
 request.add(new IndexRequest(indexName) request.add(new IndexRequest(indexName)
 .id(l.getId()) .id(l.getId())
 .source(jsonMapper.writeValueAsSt .source(jsonMapper.writeValueAsSt
 XContentType.JSON)); XContentType.JSON));

 } catch (JsonProcessingException e) { } catch (JsonProcessingException e) {
 LOG.error("Problem mapping object {}", l LOG.error("Problem mapping object {}", l
 }}); }});
 LOG.info("Sending data to ES"); LOG.info("Sending data to ES");
 client.bulk(request, RequestOptions.DEFAULT); client.bulk(request, RequestOptions.DEFAULT);
}}

public void loadData(String file, String index) public void loadData(String file, String index)
 throws IOException, URISyntaxExceptio throws IOException, URISyntaxExceptio
 Path filePath = Paths.get(Path filePath = Paths.get(
 ClassLoader.getSystemResource(file).toURI ClassLoader.getSystemResource(file).toURI

 List<String> errors = new ArrayList<>(); List<String> errors = new ArrayList<>();
 List<LineFromShakespeare> lines = new ArrayList<> List<LineFromShakespeare> lines = new ArrayList<>
 final int maxLinesInBatch = 1000; final int maxLinesInBatch = 1000;
 try(RestHighLevelClient client = try(RestHighLevelClient client =
 new RestHighLevelClient(new RestHighLevelClient(
 RestClient.builder(RestClient.builder(
 new HttpHost("localhost", 9200, "http")))) { new HttpHost("localhost", 9200, "http")))) {

 Files.lines(file).forEach(e-> { Files.lines(file).forEach(e-> {
 try { try {
 LineFromShakespeare line = LineFromShakespeare line =
 jsonMapper.readValue(e, LineFromShak jsonMapper.readValue(e, LineFromShak
 //enrich... //enrich...
 linesInBatch.add(line); linesInBatch.add(line);
 if (linesInBatch.size() >= maxLinesInBat if (linesInBatch.size() >= maxLinesInBat
 sendBatchToElasticSearch(linesInBatc sendBatchToElasticSearch(linesInBatc
 client, ind client, ind
 linesInBatch.clear(); linesInBatch.clear();

Henry Naftulin
Henry Naftulin has been designing Java EE
distributed systems for more than 15 years. He is
currently leading development of a proprietary
award-winning fixed-income trading platform for one
of the largest financial companies in the United
States.

Share this Page

Here I have used the Java API to stream a file line by
line, convert the text to an object, enrich it, and add it to the batch to be
sent to Elasticsearch. Once the batch size reaches 1,000, I ship the
batch to Elasticsearch by using the
method.

As you can see, using the high-level API simplifies your code and makes
it much more readable. So, if the binary footprint is not an issue, and you
can live with upgrading dependencies with each major upgrade to the
Elasticsearch cluster, I would highly recommend sticking with the high-
level API.

Conclusion

In this article, I introduced Elasticsearch and focused on a Java CRUD
API used in both a low-level and high-level client, showing most of the
needed functions for CRUD applications. The APIs, along with streaming
data into Elasticsearch, make up the basic knowledge you need before
embarking on an Elasticsearch adventure that includes document design,
data analyzers, advanced searching including a multifield search,
proximity matching, paging, suggestions, highlighting, result scoring, and
different types of data aggregations, geolocation, security, and cluster
management. The playing field here is really vast. Enjoy!

 } }
 } catch (IOException ex) { } catch (IOException ex) {
 errors.add(e); errors.add(e);
 linesInBatch.clear(); linesInBatch.clear();
 }}); }});

 if (linesInBatch.size() != 0) { if (linesInBatch.size() != 0) {
 sendBatchToElasticSearch(linesInBatch, sendBatchToElasticSearch(linesInBatch,
 client, indexName); client, indexName);
 linesInBatch.clear(); linesInBatch.clear();
 } }
 } }

 LOG.info("Errors found in {} batches", errors.size LOG.info("Errors found in {} batches", errors.size
}}

Files.linesFiles.lines

sendBatchToElasticSearchsendBatchToElasticSearch


Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/henry-naftulin
https://blogs.oracle.com/javamagazine/henry-naftulin
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

