
DESIGN PATTERNS

Exploring Joshua Bloch’s
Builder design pattern in Java
Bloch’s Builder pattern can be thought
of as a workaround for a missing
language feature.

by Frank Kiwy

May 28, 2021

The Builder pattern, which is one of the 23 Gang of Four (GoF)
design patterns described by Erich Gamma et al., is a creational
design pattern that lets you construct complex objects step by
step. It allows you to produce different types and representations
of a product using the same construction code. However, this
pattern should be used only if you need to build different
immutable objects using the same building process.

The Builder pattern differs not very much from another important
GoF creational pattern, the Abstract Factory pattern. While the
Builder pattern focuses on constructing a complex object step by
step, the Abstract Factory pattern emphasizes a family of

 objects, either simple or complex. Whereas the Builder
pattern returns the final as a last step, the Abstract
Factory pattern returns the immediately.

Although design patterns are language agnostic, their
implementation varies from language to language depending on
the features of each language, making some patterns even
unnecessary, as I will show in the last section of this article.

In this article, I focus on Joshua Bloch’s version of the Builder
pattern (also known as the Effective Java’s Builder pattern,
named for his book). This version of the pattern is a variation on
the GoF Builder pattern and is often confused with it.

Bloch’s version of the Builder pattern provides a simple and safe
way to build objects that have many optional parameters, so it
addresses the telescoping constructor problem (which I describe
shortly). In addition, with large constructors, which in most cases
have several parameters of the same type, it is not always

ProductProduct

ProductProduct

ProductProduct

Exploring Joshua Bloch’s
Builder design pattern in Java

Telescoping constructors

The Effective Java Builder
pattern

Reusability and limitations

State validation

Java records

Named parameters

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/design-patterns-2
https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
https://www.oreilly.com/library/view/effective-java/9780134686097/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

obvious which value belongs to which parameter. Therefore, the
likelihood of mixing up parameter values is high.

The idiom used by Bloch’s Builder pattern addresses these
issues by creating a static inner class that can be
accessed without creating an instance of the outer class (the
product being built) but that still has access to the outer private
constructor.

For the sake of clarity, when I use the term Builder pattern going
forward, I mean Bloch’s version of the Builder pattern unless I
specifically state otherwise.

Before diving any deeper, the following example class will be
used throughout this article:

BuilderBuilder

import builder.pattern.Genre;import builder.pattern.Genre;
import java.time.Year;import java.time.Year;

public class Book {public class Book {
 private final String isbn; private final String isbn;
 private final String title; private final String title;
 private final Genre genre; private final Genre genre;
 private final String author; private final String author;
 private final Year published; private final Year published;
 private final String description; private final String description;
 public Book(String isbn, String title, Ge public Book(String isbn, String title, Ge
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 this.genre = genre; this.genre = genre;
 this.author = author; this.author = author;
 this.published = published; this.published = published;
 this.description = description; this.description = description;
 } }

 public String getIsbn() { public String getIsbn() {
 return isbn; return isbn;

 } }
 public String getTitle() { public String getTitle() {

 return title; return title;
 } }

 public Genre getGenre() { public Genre getGenre() {
 return genre; return genre;
 } }

 public String getAuthor() { public String getAuthor() {
 return author; return author;
 } }

 public Year getPublished() { public Year getPublished() {
 return published; return published;
 } }

 public String getDescription() { public String getDescription() {
 return description; return description;
 } }

}}

The class has six final fields, one constructor taking all the
parameters to be set, and the corresponding getters to read the
object’s fields once the object has been created. As a
consequence, all objects derived from this class are immutable.

Further, the class has two mandatory fields: ISBN, which
refers to a book’s 10-digit or 13-digit International Standard Book
Number, and . All remaining fields are optional.

Now the question arises, how can you construct objects with
different combinations of optional parameters by using an
appropriate constructor for each given combination? Because
the objects are intended to be immutable, Enterprise JavaBean–
like setters are out of question.

Telescoping constructors

One possible solution consists of telescoping constructors,
where the first constructor takes only the mandatory fields; for
every optional field, there is a further constructor that takes the
mandatory fields plus the optional fields. Every constructor calls
the subsequent one by passing a value in place of the
missing parameter. Only the final constructor in the chain will set
all the fields by using the values provided by the parameters.

Below, you can see the class with the telescoping
constructor solution.

BookBook

BookBook

TitleTitle

nullnull

BookBook

import builder.pattern.Genre;import builder.pattern.Genre;
import java.time.Year;import java.time.Year;

public class Book {public class Book {
 private final String isbn; private final String isbn;
 private final String title; private final String title;
 private final Genre genre; private final Genre genre;
 private final String author; private final String author;
 private final Year published; private final Year published;
 private final String description; private final String description;

 public Book(String isbn, String title) { public Book(String isbn, String title) {
 this(isbn, title, null); this(isbn, title, null);
 } }

 public Book(String isbn, String title, Ge public Book(String isbn, String title, Ge
 this(isbn, title, genre, null); this(isbn, title, genre, null);
 } }

 public Book(String isbn, String title, Ge public Book(String isbn, String title, Ge
 this(isbn, title, genre, author, null this(isbn, title, genre, author, null
 } }

 public Book(String isbn, String title, Ge public Book(String isbn, String title, Ge
 this(isbn, title, genre, author, publ this(isbn, title, genre, author, publ
 } }

 public Book(String isbn, String title, Ge public Book(String isbn, String title, Ge
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 this.genre = genre; this.genre = genre;

Unfortunately, the telescoping constructors will not prevent you
from having to pass values in some cases. For instance, if
you had to create a with , , and , what
would you do? There is no such constructor!

You would probably use an existing constructor and pass a
 value in place of the missing parameter.

However, the use of values can be avoided by creating an
appropriate constructor, as follows:

The resulting constructor call should work fine but may lead to a
different problem.

 this.author = author; this.author = author;
 this.published = published; this.published = published;
 this.description = description; this.description = description;
 } }

 public String getIsbn() { public String getIsbn() {
 return isbn; return isbn;
 } }

 public String getTitle() { public String getTitle() {
 return title; return title;
 } }

 public Genre getGenre() { public Genre getGenre() {
 return genre; return genre;
 } }

 public String getAuthor() { public String getAuthor() {
 return author; return author;
 } }

 public Year getPublished() { public Year getPublished() {
 return published; return published;
 } }

 public String getDescription() { public String getDescription() {
 return description; return description;
 } }

}}

nullnull

BookBook ISBNISBN titletitle authorauthor

nullnull

new Book("0-12-345678-9", "Moby-Dick", null, new Book("0-12-345678-9", "Moby-Dick", null,

nullnull

public Book(String isbn, String title, Stringpublic Book(String isbn, String title, String
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 this.author = author; this.author = author;
}}

new Book("0-12-345678-9", "Moby-Dick", "Hermanew Book("0-12-345678-9", "Moby-Dick", "Herma

Imagine you also had to create a with and
but with instead of . You might be
tempted to add a constructor like the following:

This would not work. Two constructors of the same signature
cannot coexist in the same class, because the compiler would
not know which one to choose. In addition, creating a
constructor for every useful combination of parameters would
result in a large combination of constructors, making the
resulting code hard to read and even harder to maintain.

Therefore, neither telescoping constructors nor any other
possible combination of constructor parameters is a good
approach to solve the issues related to the construction of
objects that have numerous optional fields.

This is where Bloch’s version of the Builder pattern comes in.

The Effective Java Builder pattern

As mentioned earlier, Bloch’s Builder pattern is a variation of the
GoF Builder pattern.

The GoF Builder pattern has four components: the ,
the (interface), the
(implementation), and the . I will not go into the
individual components here, because that is beyond the scope
of this article.

Bloch’s Builder pattern is shorthand for the GoF’s counterpart in
the sense that it consists of only two of the four components: the

 and the . In addition, Bloch’s
Builder has a Java-specific implementation since the
consists of a nested static class (located inside the
class itself).

If fact, the idiom is a workaround for a missing language feature,
which is the lack of named parameters, rather than an object-
oriented design pattern.

How does it work?

First, you create an instance of the class by passing
the mandatory fields to its constructor. Then, you set the values
for the optional fields by calling the setter-like methods of the

 class. Once you have set all the fields, you call the
 method on the instance. This method creates

the by passing the previously set values to the

BookBook ISBNISBN titletitle

descriptiondescription authorauthor

public Book(String isbn, String title, Stringpublic Book(String isbn, String title, String
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 this.description = description; this.description = description;
}}

DirectorDirector

BuilderBuilder ConcreteBuilderConcreteBuilder

ProductProduct

ConcreteBuilderConcreteBuilder ProductProduct

BuilderBuilder

ProductProduct

BuilderBuilder

BuilderBuilder

buildbuild BuilderBuilder

ProductProduct

’s constructor, and it eventually returns a new
instance.

Here is the implementation.

ProductProduct ProductProduct

import builder.pattern.Genre;import builder.pattern.Genre;
import java.time.Year;import java.time.Year;

public class Book {public class Book {
 private final String isbn; private final String isbn;
 private final String title; private final String title;
 private final Genre genre; private final Genre genre;
 private final String author; private final String author;
 private final Year published; private final Year published;
 private final String description; private final String description;
 private Book(Builder builder) { private Book(Builder builder) {
 this.isbn = builder.isbn; this.isbn = builder.isbn;
 this.title = builder.title; this.title = builder.title;
 this.genre = builder.genre; this.genre = builder.genre;
 this.author = builder.author; this.author = builder.author;
 this.published = builder.published; this.published = builder.published;
 this.description = builder.descriptio this.description = builder.descriptio
 } }

 public String getIsbn() { public String getIsbn() {
 return isbn; return isbn;
 } }

 public String getTitle() { public String getTitle() {
 return title; return title;
 } }

 public Genre getGenre() { public Genre getGenre() {
 return genre; return genre;
 } }

 public String getAuthor() { public String getAuthor() {
 return author; return author;
 } }

 public Year getPublished() { public Year getPublished() {
 return published; return published;
 } }

 public String getDescription() { public String getDescription() {
 return description; return description;
 } }

 public static class Builder { public static class Builder {
 private final String isbn; private final String isbn;
 private final String title; private final String title;
 private Genre genre; private Genre genre;
 private String author; private String author;
 private Year published; private Year published;
 private String description; private String description;

 public Builder(String isbn, String ti public Builder(String isbn, String ti
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 } }

 public Builder genre(Genre genre) { public Builder genre(Genre genre) {
 this.genre = genre; this.genre = genre;
 return this; return this;
 } }

The following are some things to note:

This is how the is used.

 public Builder author(String author) public Builder author(String author)
 this.author = author; this.author = author;
 return this; return this;
 } }

 public Builder published(Year publish public Builder published(Year publish
 this.published = published; this.published = published;
 return this; return this;
 } }

 public Builder description(String des public Builder description(String des
 this.description = description; this.description = description;
 return this; return this;
 } }

 public Book build() { public Book build() {
 return new Book(this); return new Book(this);
 } }

 } }

}}

The scope of the constructor has been changed to
, so that it cannot be accessed from the outside

of the class. This makes it impossible to create a
 instance directly. The object creation process is

delegated to the class.

 BookBook
privateprivate

BookBook
BookBook

BuilderBuilder

The constructor takes a instance as its
only parameter, which contains all the values to be set by
the constructor. Alternatively, the constructor
could take all the parameters corresponding to the
fields, but this would mean that you must deal again with
many parameters to be set in the right order when you call
the constructor from the ’s method.
Mixing up parameters of the same type is one of the
potential issues developers try to avoid by implementing
the pattern.

 BookBook BuilderBuilder

BookBook BookBook
BookBook

BookBook BuilderBuilder buildbuild

BuilderBuilder

The class contains the same fields as the
class, which is necessary to hold the values to be passed
to the constructor. This has often been rightly
criticized as code duplication.

 BuilderBuilder BookBook

BookBook

For every optional field to be set, the class
exposes a setter-like method, which assigns the field’s
value and returns the current instance to build
the object in a fluent way. Since each method call returns
the same instance, method calls can be chained,
which makes the client code more concise and readable.

 BuilderBuilder

BuilderBuilder

BuilderBuilder

The method calls the constructor by passing
the current instance as the only parameter. The
values held by the instance are then unpacked
by the constructor, which assigns them to the
corresponding fields.

 buildbuild BookBook
BuilderBuilder

BuilderBuilder
BookBook

BookBook

BuilderBuilder

Reusability and limitations

The Builder pattern also allows for reusing existing
instances, which already have been populated in a previous
construction process. This makes it easy to create a new object
that has only a few different attribute values, since you do not
have to set all the values again.

Let’s see how this works with the example. Herman
Melville’s Moby Dick has been published in several editions. The
first was released in 1851. Another, which appeared in 1952,
included a 25-page introduction and more than 250 pages of
explanatory notes.

If you wanted to create a new object for the 1952 edition,
you could simply reuse a previously created instance
for the 1851 version, override the publishing date, and call the

 method again to produce a new object
corresponding to the 1952 edition.

However, the example above is not very realistic, because you
also would have to change the ISBN—which is not possible
since the ISBN field is and, therefore, must be set via the

’s constructor. This, in turn, would result in the creation
of a new instance. That example reveals the limits of the

’s reusability.

State validation

Book book = new Book.Builder("0-12-345678-9",Book book = new Book.Builder("0-12-345678-9",
 .genre(Genre.ADVENTURE_FICTIO .genre(Genre.ADVENTURE_FICTIO
 .author("Herman Melville") .author("Herman Melville")
 .published(Year.of(1851)) .published(Year.of(1851))
 .description(.description(
 "The book is the sail "The book is the sail
 + "Ahab, captain of t + "Ahab, captain of t
 + "the giant white sp + "the giant white sp
 + "off Ahab's leg at + "off Ahab's leg at
))
 .build(); .build();

BuilderBuilder

BookBook

BookBook

BuilderBuilder

buildbuild BookBook

Book.Builder bookBuilder = new Book.Builder("Book.Builder bookBuilder = new Book.Builder("
 .genre(Genre.ADVENTURE_FICTIO .genre(Genre.ADVENTURE_FICTIO
 .author("Herman Melville") .author("Herman Melville")
 .published(Year.of(1851)) .published(Year.of(1851))
 .description("description omi .description("description omi

// Create a first Book object// Create a first Book object
Book book = bookBuilder.build();Book book = bookBuilder.build();

// Create a second, slightly different, objec// Create a second, slightly different, objec
book = bookBuilder.published(Year.of(1952)).bbook = bookBuilder.published(Year.of(1952)).b

finalfinal

BuilderBuilder

BookBook

BuilderBuilder

Bloch’s Builder pattern also allows for convenient state validation
during the construction process of the instance. Since
all the fields are , and thus can’t be changed after a

 instance has been created, the state needs to be validated
only once, specifically at construction time. The validation logic
can be implemented (or called) either in the ’s
method or in the constructor. In the following example, the
logic is called from the method:

ProductProduct

BookBook finalfinal

BookBook

BuilderBuilder buildbuild

BookBook

buildbuild

public static class Builder {public static class Builder {
 private final IsbnValidator isbnValidator private final IsbnValidator isbnValidator
 private final String isbn; private final String isbn;
 private final String title; private final String title;
 private Genre genre; private Genre genre;
 private String author; private String author;
 private Year published; private Year published;
 private String description; private String description;

 public Builder(String isbn, String title) public Builder(String isbn, String title)
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 } }

 public Builder genre(Genre genre) { public Builder genre(Genre genre) {
 this.genre = genre; this.genre = genre;
 return this; return this;
 } }

 public Builder author(String author) { public Builder author(String author) {
 this.author = author; this.author = author;
 return this; return this;
 } }

 public Builder published(Year published) public Builder published(Year published)
 this.published = published; this.published = published;
 return this; return this;
 } }

 public Builder description(String descrip public Builder description(String descrip
 this.description = description; this.description = description;
 return this; return this;
 } }

 public Book build() throws IllegalStateEx public Book build() throws IllegalStateEx
 validate(); validate();
 return new Book(this); return new Book(this);
 } }

 private void validate() throws IllegalSta private void validate() throws IllegalSta
 MessageBuilder mb = new MessageBuilde MessageBuilder mb = new MessageBuilde
 if (isbn == null) { if (isbn == null) {
 mb.append("ISBN must not be null. mb.append("ISBN must not be null.
 } else if (!isbnValidator.isValid(isb } else if (!isbnValidator.isValid(isb
 mb.append("Invalid ISBN!"); mb.append("Invalid ISBN!");
 } }
 if (title == null) { if (title == null) {
 mb.append("Title must not be null mb.append("Title must not be null
 } else if (title.length() < 2) { } else if (title.length() < 2) {
 mb.append("Title must have at lea mb.append("Title must have at lea
 } else if (title.length() > 100) { } else if (title.length() > 100) {
 mb.append("Title cannot have more mb.append("Title cannot have more
 } }
 if (author != null && author.length() if (author != null && author.length()

By calling the validation logic before the actual object is created,
you can be guaranteed that every instance created by the

 has a valid state.

Java records

My previous article, “Diving into Java records: Serialization,
marshaling, and bean state validation,” included an example of
Bloch’s Builder pattern implemented in a Java record. Indeed,
records are well suited for Bloch’s Builder implementation,
because they are inherently immutable constructs.

 mb.append("Author cannot have mor mb.append("Author cannot have mor
 } }
 if (published != null && published.is if (published != null && published.is
 mb.append("Year published cannot mb.append("Year published cannot
 } }
 if (description != null && descriptio if (description != null && descriptio
 mb.append("Description cannot hav mb.append("Description cannot hav
 } }
 if (mb.length() > 0) { if (mb.length() > 0) {
 throw new IllegalStateException(m throw new IllegalStateException(m
 } }
 } }

}}

BookBook

BuilderBuilder

public record BookRecord(String isbn, String public record BookRecord(String isbn, String

 private BookRecord(Builder builder) { private BookRecord(Builder builder) {
 this(builder.isbn, builder.title, bui this(builder.isbn, builder.title, bui
 } }

 public static class Builder { public static class Builder {
 private final IsbnValidator isbnValid private final IsbnValidator isbnValid
 private final String isbn; private final String isbn;
 private final String title; private final String title;
 private Genre genre; private Genre genre;
 private String author; private String author;
 private Year published; private Year published;
 private String description; private String description;

 public Builder(String isbn, String ti public Builder(String isbn, String ti
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 } }

 public Builder genre(Genre genre) { public Builder genre(Genre genre) {
 this.genre = genre; this.genre = genre;
 return this; return this;
 } }

 public Builder author(String author) public Builder author(String author)
 this.author = author; this.author = author;
 return this; return this;
 } }

 public Builder published(Year publish public Builder published(Year publish
 this.published = published; this.published = published;
 return this; return this;
 } }

https://blogs.oracle.com/javamagazine/diving-into-java-records-serialization-marshaling-and-bean-state-validation

The example above uses an alternative constructor to pass the
 instance to the constructor. In an alternative

constructor, the canonical constructor (the one generated by the
compiler) must be called before you can add any further
statements. This means that the values of the fields
must be passed to the constructor parameters and, therefore,
cannot be assigned directly to the fields.

There’s another choice: You can call the canonical constructor
directly from the ’s method. Either way, ensure
that the constructor parameters are not mixed up.

Fortunately, with records, you do not have any code duplication
as you have with regular classes, because the compiler
generates the record fields and accessors. You can declare the
fields only once explicitly in the class.

Named parameters

 public Builder description(String des public Builder description(String des
 this.description = description; this.description = description;
 return this; return this;
 } }

 public BookRecord build() throws Ille public BookRecord build() throws Ille
 validate(); validate();
 return new BookRecord(this); return new BookRecord(this);
 } }

 private void validate() throws Illega private void validate() throws Illega
 MessageBuilder mb = new MessageBu MessageBuilder mb = new MessageBu
 if (isbn == null) { if (isbn == null) {
 mb.append("ISBN must not be n mb.append("ISBN must not be n
 } else if (!isbnValidator.isValid } else if (!isbnValidator.isValid
 mb.append("Invalid ISBN!"); mb.append("Invalid ISBN!");
 } }
 if (title == null) { if (title == null) {
 mb.append("Title must not be mb.append("Title must not be
 } else if (title.length() < 2) { } else if (title.length() < 2) {
 mb.append("Title must have at mb.append("Title must have at
 } else if (title.length() > 100) } else if (title.length() > 100)
 mb.append("Title cannot have mb.append("Title cannot have
 } }
 if (author != null && author.leng if (author != null && author.leng
 mb.append("Author cannot have mb.append("Author cannot have
 } }
 if (published != null && publishe if (published != null && publishe
 mb.append("Year published can mb.append("Year published can
 } }
 if (description != null && descri if (description != null && descri
 mb.append("Description cannot mb.append("Description cannot
 } }
 if (mb.length() > 0) { if (mb.length() > 0) {
 throw new IllegalStateExcepti throw new IllegalStateExcepti
 } }
 } }

 } }

}}

BuilderBuilder recordrecord

BuilderBuilder

recordrecord

BuilderBuilder buildbuild

BuilderBuilder

If Java had named parameters, Bloch’s version of the Builder
pattern would be unnecessary, because you could provide only
those parameters currently needed to create the object. Look at
the following constructor:

Below are two examples of how the constructor can be called.

With named parameters, you need to define only a single
constructor that works for all possible combinations of
parameters. Thus, the number of parameters used and the order
in which they are set does not matter. The omitted parameters
take the default values specified in the constructor definition.

Conclusion

With Bloch’s version of the Builder pattern, you can create
objects that have many optional parameters without using
cumbersome and error-prone telescoping constructors. Further,
the pattern avoids mixing up parameter values in large
constructors that often have multiple consecutive parameters of
the same type.

In addition, the same instance can be used to create
other objects of the same type that have slightly different
attribute values than the one created in the first construction
process.

The Builder pattern also allows for easy state validation by
implementing or calling the validation logic in the method,
before the actual object is created. This avoids the creation of
objects with invalid state.

When the pattern is used with records, there is no code
duplication as is the case with regular classes, which require the
same fields to be specified in the and
classes.

Finally, if Java had named parameters, Bloch’s version of the
Builder pattern would be superfluous.

Dig deeper

public Book(String isbn = null, String title public Book(String isbn = null, String title
 this.isbn = isbn; this.isbn = isbn;
 this.title = title; this.title = title;
 this.genre = genre; this.genre = genre;
 this.author = author; this.author = author;
 this.published = published; this.published = published;
 this.description = description; this.description = description;
}}

new Book(isbn = "0-12-345678-9", title = "Mobnew Book(isbn = "0-12-345678-9", title = "Mob
new Book(isbn = "0-12-345678-9", title = "Mobnew Book(isbn = "0-12-345678-9", title = "Mob

BuilderBuilder

buildbuild

ProductProduct BuilderBuilder

Frank Kiwy
Frank Kiwy is a senior software developer
and project leader who works for a
government IT center in Europe. His focus
is on Java SE, Java EE, and web
technologies. Kiwy is also interested in
software architecture and is committed to
continuous integration and delivery. He is
currently involved in implementing the
European Union's Common Agricultural
Policy, where he's in charge of several
projects. When programming, he values
well-designed software with clear and easy-
to-understand APIs.

Share this Page

Diving into Java records: Serialization, marshaling, and
bean state validation

Review of Joshua Bloch’s Effective Java (third edition)

Interview of Google’s Joshua Bloch

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/frank-kiwy
https://blogs.oracle.com/javamagazine/frank-kiwy
https://blogs.oracle.com/javamagazine/diving-into-java-records-serialization-marshaling-and-bean-state-validation
https://blogs.oracle.com/javamagazine/effective-java-third-edition
https://www.oracle.com/technical-resources/articles/javase/bloch-effective-08-qa.html
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

